Origin and prediction of free-solution interaction studies performed label-free.
نویسندگان
چکیده
Interaction/reaction assays have led to significant scientific discoveries in the biochemical, medical, and chemical disciplines. Several fundamental driving forces form the basis of intermolecular and intramolecular interactions in chemical and biochemical systems (London dispersion, hydrogen bonding, hydrophobic, and electrostatic), and in the past three decades the sophistication and power of techniques to interrogate these processes has developed at an unprecedented rate. In particular, label-free methods have flourished, such as NMR, mass spectrometry (MS), surface plasmon resonance (SPR), biolayer interferometry (BLI), and backscattering interferometry (BSI), which can facilitate assays without altering the participating components. The shortcoming of most refractive index (RI)-based label-free methods such as BLI and SPR is the requirement to tether one of the interaction entities to a sensor surface. This is not the case for BSI. Here, our hypothesis is that the signal origin for free-solution, label-free determinations can be attributed to conformation and hydration-induced changes in the solution RI. We propose a model for the free-solution response function (FreeSRF) and show that, when quality bound and unbound structural data are available, FreeSRF correlates well with the experiment (R(2)> 0.99, Spearman rank correlation coefficients >0.9) and the model is predictive within ∼15% of the experimental binding signal. It is also demonstrated that a simple mass-weighted dη/dC response function is the incorrect equation to determine that the change in RI is produced by binding or folding event in free solution.
منابع مشابه
A simulation study on the performance of various label-free electronic biosensors
The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...
متن کاملA simulation study on the performance of various label-free electronic biosensors
The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...
متن کاملA novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes
Objective(s): This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at λ807. Materials and Methods: First a DNA aptamer recognizing cocaine was non-co...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملPrediction of Service Life in Concrete Structures based on Diffusion Model in a Marine Environment using Mesh Free, FEM and FDM Approaches
Chloride-induced corrosion is a key factor in the premature corrosion of concrete structures exposed to a marine environment. Fick's second law of diffusion is the dominant equation to model diffusion of chloride ions. This equation is traditionally solved by Finite Element Method (FEM) and Finite Difference Method (FDM). Although these methods are robust and efficient, they may face some numer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 12 شماره
صفحات -
تاریخ انتشار 2016